

Statistics for Managers Using Microsoft®® Excel 5th Edition

Chapter 3
 Numerical Descriptive Measures

Learning Objectives

In this chapter, you will learn:

- To describe the properties of central tendency, variation and shape in numerical data
- To calculate descriptive summary measures for a population
- To construct and interpret a box-and-whisker plot
- To describe the covariance and coefficient of correlation

Summary Definitions

- The central tendency is the extent to which all the data values group around a typical or central value.
- The variation is the amount of dispersion, or scattering, of values
- The shape is the pattern of the distribution of values from the lowest value to the highest value.

Measures of Central Tendency The Arithmetic Mean

- The arithmetic mean (mean) is the most common measure of central tendency

For a sample of size n :

Measures of Central Tendency The Arithmetic Mean

- The most common measure of central tendency
- Mean = sum of values divided by the number of values
- Affected by extreme values (outliers)

$$
\frac{1+2+3+4+5}{5}=\frac{15}{5}=3
$$

Measures of Central Tendency

 The Median- In an ordered array, the median is the "middle" number (50\% above, 50% below)

Median = 4

- Not affected by extreme values

Measures of Central Tendency Locating the Median

- The median of an ordered set of data is located at the $\frac{n+1}{2}$ ranked value.
- If the number of values is odd, the median is the middle number.
- If the number of values is even, the median is the average of the two middle numbers.
- Note that $\frac{n+1}{2}$ is NOT the value of the median, only the position of the median in the ranked data.

Measures of Central Tendency

The Mode

- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical data
- There may be no mode
- There may be several modes

Measures of Central Tendency Review Example

House Prices:
$\mathbf{\$ 2 , 0 0 0 , 0 0 0}$
$\mathbf{5 0 0 , 0 0 0}$
$\mathbf{3 0 0 , 0 0 0}$
$\mathbf{1 0 0 , 0 0 0}$
$\mathbf{1 0 0 , 0 0 0}$
Sum $\mathbf{3 , 0 0 0 , 0 0 0}$

- Mean: (\$3,000,000/5)
$=\$ 600,000$
- Median: middle value of ranked data
$=\mathbf{\$ 3 0 0 , 0 0 0}$
- Mode: most frequent value
$=\mathbf{\$ 1 0 0 , 0 0 0}$

Measures of Central Tendency Which Measure to Choose?

- The mean is generally used, unless extreme values (outliers) exist.
- Then median is often used, since the median is not sensitive to extreme values. For example, median home prices may be reported for a region; it is less sensitive to outliers.

Quartile Measures

- Quartiles split the ranked data into 4 segments with an equal number of values per segment.

- The first quartile, Q_{1}, is the value for which 25% of the observations are smaller and 75% are larger
- Q_{2} is the same as the median (50% are smaller, 50% are larger)
- Only 25% of the values are greater than the third quartile

Quartile Measures Locating Quartiles

Find a quartile by determining the value in the appropriate position in the ranked data, where

First quartile position: $\quad \mathbf{Q}_{\mathbf{1}}=(\mathbf{n}+\mathbf{1}) / 4$ ranked value
Second quartile position:
$\mathrm{Q}_{2}=(\mathrm{n}+1) / 2$ ranked value
Third quartile position:
$Q_{3}=3(n+1) / 4$ ranked value
where \mathbf{n} is the number of observed values

Quartile Measures Guidelines

- Rule 1: If the result is a whole number, then the quartile is equal to that ranked value.
- Rule 2: If the result is a fraction half $(2.5,3.5$, etc), then the quartile is equal to the average of the corresponding ranked values.
- Rule 3: If the result is neither a whole number or a fractional half, you round the result to the nearest integer and select that ranked value.

Quartile Measures Locating the First Quartile

- Example: Find the first quartile

Sample Data in Ordered Array: $\begin{array}{lllllllll}11 & 12 & 13 & 16 & 16 & 17 & 18 & 21 & 22\end{array}$

First, note that $\mathrm{n}=9$.
$\mathrm{Q}_{1}=$ is in the $\quad(\mathbf{9}+\mathbf{1}) / \mathbf{4} \mathbf{= 2 . 5}$ ranked value of the ranked data, so use the value half way between the $2^{\text {nd }}$ and $3^{\text {rd }}$ ranked values,

$$
\text { so } \quad Q_{1}=\mathbf{1 2 . 5}
$$

Q_{1} and Q_{3} are measures of non-central location $\mathrm{Q}_{2}=$ median, a measure of central tendency

Measures of Central Tendency The Geometric Mean

- Geometric mean
- Used to measure the rate of change of a variable over time

$$
\bar{X}_{G}=\left(X_{1} \times X_{2} \times \cdots \times X_{n}\right)^{1 / n}
$$

- Geometric mean rate of return
- Measures the status of an investment over time

$$
\bar{R}_{G}=\left[\left(1+R_{1}\right) \times\left(1+R_{2}\right) \times \cdots \times\left(1+R_{n}\right)\right]^{1 / n}-1
$$

- Where R_{i} is the rate of return in time period i

Measures of Central Tendency The Geometric Mean

An investment of $\$ 100,000$ declined to $\$ 50,000$ at the end of year one and rebounded to $\$ 100,000$ at end of year two:

$$
X_{1}=\$ 100,000 \quad X_{2}=\$ 50,000 \quad X_{3}=\$ 100,000
$$

50% decrease
100\% increase

The overall two-year return is zero, since it started and ended at the same level.

Measures of Central Tendency The Geometric Mean

Use the 1-year returns to compute the arithmetic mean and the geometric mean:

Arithmetic mean rate of return:

$$
\bar{X}=\frac{(-.5)+(1)}{2}=.25
$$

Misleading result

Geometric mean rate of return:

$$
\begin{aligned}
\bar{R}_{G} & =\left[\left(1+R_{1}\right) \times\left(1+R_{2}\right) \times \cdots \times\left(1+R_{n}\right)\right]^{1 / n}-1 \\
& =[(1+(-.5)) \times(1+(1))]^{1 / 2}-1 \\
& =[(.50) \times(2)]^{1 / 2}-1=1^{1 / 2}-1=0 \%
\end{aligned}
$$

More accurate result

Measures of Central Tendency Summary

Measures of Variation

- Variation measures the spread, or dispersion, of values in a data set.
- Range
- Interquartile Range
- Variance
- Standard Deviation
- Coefficient of Variation

Measures of Variation Range

- Simplest measure of variation
- Difference between the largest and the smallest values:

$$
\text { Range }=X_{\text {largest }}-X_{\text {smallest }}
$$

Example:

Range =13-1 = 12

Measures of Variation Disadvantages of the Range

- Ignores the way in which data are distributed

- Sensitive to outliers

$$
\begin{gathered}
\mathbf{1}, 1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,5 \\
\text { Range }=\mathbf{5 - 1}=\mathbf{4}
\end{gathered}
$$

1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,120

$$
\text { Range }=120-1=119
$$

Measures of Variation Interquartile Range

- Problems caused by outliers can be eliminated by using the interquartile range.
- The IQR can eliminate some high and low values and calculate the range from the remaining values.
- Interquartile range $=3$ rd quartile -1 st quartile

$$
=\mathrm{Q}_{3}-\mathrm{Q}_{1}
$$

Measures of Variation Interquartile Range

Example:

Measures of Variation Variance

- The variance is the average (approximately) of squared deviations of values from the mean.

Where $\quad \bar{X}=$ arithmetic mean

$$
\mathrm{n}=\text { sample size }
$$

$$
\mathrm{X}_{\mathrm{i}}=\mathrm{i}^{\text {th }} \text { value of the variable } \mathrm{X}
$$

Measures of Variation Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data

Sample standard deviation: $S=\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}}$

Measures of Variation Standard Deviation

Steps for Computing Standard Deviation

1. Compute the difference between each value and the mean.
2. Square each difference.
3. Add the squared differences.
4. Divide this total by $\mathrm{n}-1$ to get the sample variance.
5. Take the square root of the sample variance to get the sample standard deviation.

Measures of Variation Standard Deviation

Sample
Data $\left(\mathbf{X}_{\mathbf{i}}\right): \begin{array}{lllllllll}10 & 12 & 14 & 15 & 17 & 18 & 18 & 24\end{array}$

$$
\begin{aligned}
& \mathrm{n}=8 \quad \text { Mean }=\overline{\mathrm{X}}=16 \\
& \mathrm{~S}=\sqrt{\frac{(10-\overline{\mathrm{X}})^{2}+(12-\overline{\mathrm{X}})^{2}+(14-\overline{\mathrm{X}})^{2}+\cdots+(24-\overline{\mathrm{X}})^{2}}{\mathrm{n}-1}} \\
&=\sqrt{\frac{(10-16)^{2}+(12-16)^{2}+(14-16)^{2}+\cdots+(24-16)^{2}}{8-1}} \\
&=\sqrt{\frac{126}{7}}=\sqrt{4.2426} \Longrightarrow \begin{array}{l}
\text { A measure of the "average" } \\
\text { scatter around the mean }
\end{array}
\end{aligned}
$$

Measures of Variation Comparing Standard Deviation

Measures of Variation Comparing Standard Deviation

Measures of Variation Summary Characteristics

- The more the data are spread out, the greater the range, interquartile range, variance, and standard deviation.
- The more the data are concentrated, the smaller the range, interquartile range, variance, and standard deviation.
- If the values are all the same (no variation), all these measures will be zero.
- None of these measures are ever negative.

Coefficient of Variation

- The coefficient of variation is the standard deviation divided by the mean, multiplied by 100 .
- It is always expressed as a percentage. (\%)
- It shows variation relative to mean.
- The CV can be used to compare two or more sets of data measured in different units.

$$
\mathrm{CV}=\left(\frac{\mathrm{S}}{\overline{\mathrm{X}}}\right) \cdot 100 \%
$$

Coefficient of Variation

- Stock A:
- Average price last year $=\$ 50$
- Standard deviation = \$5

$$
C V_{A}=\left(\frac{S}{\bar{X}}\right) \cdot 100 \%=\frac{\$ 5}{\$ 50} \cdot 100 \%=10 \%
$$

- Stock B:
- Average price last year $=\$ 100$
- Standard deviation $=\$ 5$

$$
\mathrm{CV}_{\mathrm{B}}=\left(\frac{\mathrm{S}}{\overline{\mathrm{X}}}\right) \cdot 100 \%=\frac{\$ 5}{\$ 100} \cdot 100 \%=5 \%
$$

Both stocks

 have the same standard deviation, but stock B is less variable relative to its price
Locating Extreme Outliers Z-Score

- To compute the Z-score of a data value, subtract the mean and divide by the standard deviation.
- The Z-score is the number of standard deviations a data value is from the mean.
- A data value is considered an extreme outlier if its Z-score is less than -3.0 or greater than +3.0 .
- The larger the absolute value of the Z-score, the farther the data value is from the mean.

Locating Extreme Outliers

 Z-Score$$
Z=\frac{X-\bar{X}}{S}
$$

where X represents the data value
$\overline{\mathrm{X}}$ is the sample mean
S is the sample standard deviation

Locating Extreme Outliers Z-Score

- Suppose the mean math SAT score is 490 , with a standard deviation of 100 .
- Compute the z-score for a test score of 620.

$$
Z=\frac{X-\bar{X}}{S}=\frac{620-490}{100}=\frac{130}{100}=1.3
$$

- A score of 620 is 1.3 standard deviations above the mean and would not be considered an outlier.

Shape of a Distribution

- Describes how data are distributed
- Measures of shape
- Symmetric or skewed

Left-Skewed Mean < Median

Symmetric
Mean = Median

Right-Skewed
Median < Mean

General Descriptive Stats Using Microsoft Excel

1. Select Tools.

General Descriptive Stats Using Microsoft Excel

4. Enter the cell range.
5. Check the

Summary
Statistics box.
6. Click OK

General Descriptive Stats Using Microsoft Excel

Microsoft Excel

descriptive statistics output, using the house price data:

House Prices:
\[\begin{array}{r} \$ 2,000,000
500,000
300,000
100,000
100,000 \end{array} \]

	A	B	
1	House Prices		
2			
3	Mean		
4	Standard Error	357770.8764	
5	Median		300000
6	Mode		100000
7	Standard Deviation	800000	
8	Sample Variance	$6.4 \mathrm{E}+11$	
9	Kurtosis	4.130126953	
10	Skewness	2.006835938	
11	Range	1900000	
12	Minimum	100000	
13	Maximum	2000000	
14	Sum	3000000	
15	Count		
16			
17			

Numerical Descriptive Measures for a Population

- Descriptive statistics discussed previously described a sample, not the population.
- Summary measures describing a population, called parameters, are denoted with Greek letters.
- Important population parameters are the population mean, variance, and standard deviation.

Population Mean

- The population mean is the sum of the values in the population divided by the population size, N.

$$
\mu=\frac{\sum_{i=1}^{N} X_{i}}{N}=\frac{X_{1}+X_{2}+\cdots+X_{N}}{N}
$$

Where $\quad \mu=$ population mean
$N=$ population size
$X_{i}=\mathrm{i}^{\text {th }}$ value of the variable X

Population Variance

- The population variance is the average of squared deviations of values from the mean

$$
\sigma^{2}=\frac{\sum_{\mathrm{i}=1}^{N}\left(X_{\mathrm{i}}-\mu\right)^{2}}{N}
$$

Where
$\mu=$ population mean
$N=$ population size
$X_{i}=\mathrm{i}^{\text {th }}$ value of the variable X

Population Standard Deviation

- The population standard deviation is the most commonly used measure of variation.
- It has the same units as the original data.

$$
\sigma=\sqrt{\frac{\sum_{\mathrm{i}=1}^{N}\left(X_{\mathrm{i}}-\mu\right)^{2}}{N}}
$$

Where $\quad \mu=$ population mean
$N=$ population size
$X_{\mathrm{i}}=\mathrm{i}^{\text {th }}$ value of the variable X

Sample statistics versus population parameters

Measure	Population Parameter	Sample Statistic
Mean	μ	\bar{X}
Variance	σ^{2}	S^{2}
Standard Deviation	σ	S

The Empirical Rule

- The empirical rule approximates the variation of data in bell-shaped distributions.

Approximately 68% of the data in a bell-shaped distribution lies within one standard deviation of the mean, or $\mu \pm 1 \sigma$

The Empirical Rule

-Approximately 95% of the data in a bell-shaped distribution lies within two standard deviation of the mean, or $\mu \pm 2 \sigma$

- Approximately 99.7% of the data in a bell-shaped distribution lies within three standard deviation of the mean, or $\mu \pm 3 \sigma$

Using the Empirical Rule

- Suppose that the variable Math SAT scores is bellshaped with a mean of 500 and a standard deviation of 90 . Then, :
- 68% of all test takers scored between 410 and 590 (500 +/- 90).
- 95% of all test takers scored between 320 and 680 (500 +/- 180).
- 99.7% of all test takers scored between 230 and 770 (500 +/- 270).

Chebyshev Rule

- Regardless of how the data are distributed (symmetric or skewed), at least ($1-1 / \mathrm{k}^{2}$) of the values will fall within k standard deviations of the mean (for $k>1$)
- Examples:

	At least
$k=2$	$\left(1-1 / 2^{2}\right)=75 \% \ldots \ldots \ldots(\mu \pm 2 \sigma)$
$k=3$	$\left(1-1 / 3^{2}\right)=89 \% \ldots \ldots \ldots(\mu \pm 3 \sigma)$

Exploratory Data Analysis The Five Number Summary

- The five numbers that describe the spread of data are:
- Minimum
- First Quartile $\left(\mathrm{Q}_{1}\right)$
- Median $\left(\mathrm{Q}_{2}\right)$
- Third Quartile $\left(\mathrm{Q}_{3}\right)$
- Maximum

Exploratory Data Analysis The Box-and-Whisker Plot

- The Box-and-Whisker Plot is a graphical display of the five number summary.

Exploratory Data Analysis The Box-and-Whisker Plot

- The Box and central line are centered between the endpoints if data are symmetric around the median.

- A Box-and-Whisker plot can be shown in either vertical or horizontal format.

Exploratory Data Analysis The Box-and-Whisker Plot

Left-Skewed

Q1 Q2Q3

Symmetric

Q1Q2Q3

Right-Skewed

Q1 Q2 Q3

Sample Covariance

- The sample covariance measures the strength of the linear relationship between two numerical variables.
- The sample covariance:

$$
\operatorname{cov}(X, Y)=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{n-1}
$$

- The covariance is only concerned with the strength of the relationship.
- No causal effect is implied.

Sample Covariance

- Covariance between two random variables:
- $\operatorname{cov}(X, Y)>0 \quad X$ and Y tend to move in the same direction
- $\operatorname{cov}(X, Y)<0 \quad X$ and Y tend to move in opposite directions
- $\operatorname{cov}(X, Y)=0 \quad X$ and Y are independent

The Correlation Coefficient

- The correlation coefficient measures the relative strength of the linear relationship between two variables.
- Sample coefficient of correlation:

$$
r=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}=\frac{\operatorname{cov}(X, Y)}{S_{X} S_{Y}}
$$

The Correlation Coefficient

- Unit free
- Ranges between -1 and 1
- The closer to -1 , the stronger the negative linear relationship
- The closer to 1 , the stronger the positive linear relationship
- The closer to 0 , the weaker any linear relationship

The Correlation Coefficient

Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.

The Correlation Coefficient Using Microsoft Excel

"ill|||

The Correlation Coefficient Using Microsoft Excel

The Correlation Coefficient Using Microsoft Excel

- $\mathrm{r}=.733$
- There is a relatively strong positive linear relationship between test score \#1 and test score \#2.
- Students who scored high
 on the first test tended to score high on second test.

Pitfalls in Numerical Descriptive Measures

- Data analysis is objective
- Analysis should report the summary measures that best meet the assumptions about the data set.
- Data interpretation is subjective
- Interpretation should be done in fair, neutral and clear manner.

Ethical Considerations

Numerical descriptive measures:

- Should document both good and bad results
- Should be presented in a fair, objective and neutral manner
- Should not use inappropriate summary measures to distort facts

Chapter Summary

In this chapter, we have

- Described measures of central tendency
- Mean, median, mode, geometric mean
- Discussed quartiles
- Described measures of variation
- Range, interquartile range, variance and standard deviation, coefficient of variation
- Illustrated shape of distribution
- Symmetric, skewed, box-and-whisker plots

Chapter Summary

In this chapter, we have

- Discussed covariance and correlation coefficient.
- Addressed pitfalls in numerical descriptive measures and ethical considerations.

