CHAPTER 5 APPLICATIONS OF INTEGRATION

5.1 Geometrical Interpretation-Definite Integral
(page 362)

5.2 Area of a Region (page 369)
5.2.1 Area of a Region Under a Graph (page 369)

Figure 5.7 shows the region bounded by the curve \(y = f(x) \), the \(x \)-axis, and the lines \(x = a \) and \(x = b \). This region is located above the \(x \)-axis. The area of this region is given by

\[
\int_a^b f(x) \, dx
\]
Figure 5.8 shows the region bounded by the curve $y = g(x)$, the x-axis, and the lines $x = a$ and $x = b$. This region is located below the x-axis. The definite integral $\int_a^b f(x) \, dx$ has a negative value. Since the area is always a positive quantity, the area of this region is written as

$$\left| \int_a^b g(x) \, dx \right|$$

Figure 5.9 shows the region bounded by the curve $x = u(y)$, the y-axis, and the lines $y = c$ and $y = d$. This region is located on the right hand side of the y-axis. The area of this region is given by

$$\int_c^d u(y) \, dy$$

Example 5.3 (page 370):

Find the area of the region bounded by the curve $y = 2 - x^2$, the x-axis and the lines $x = 0$ and $x = 1$.

Example 5.4 (page 371):
Find the area bounded by the lines \(y = 2 - x \), \(x = 3 \), \(x = 4 \) and \(x \)-axis.

Example 5.8 (page 374):

Find the area of the region in the first quadrant bounded by the curve \(y = \frac{2}{x} \), \(y \)-axis with lines \(y = 2 \) and \(y = 4 \).

5.2.2 Area of the Region between Two Curves

Definition 5.2 (Area Between Two Curves)

If \(f(x) \) and \(g(x) \) are continuous in the interval \([a, b]\) and \(g(x) \leq f(x) \) for all \(x \) in \([a, b]\), then the area of the region
bounded by the curves \(y = f(x) \) and \(y = g(x) \) between the lines \(x = a \) and \(x = b \) is given by
\[
A = \int_{a}^{b} \{ f(x) - g(x) \} \, dx.
\]

Example 5.10 (page 376):
Find the area of the region bounded by the curve \(y = x^2 + 2 \) and the lines \(y = -x \), \(x = 0 \) and \(x = 1 \).

Example 5.15 (page 380):
Find the area of the region bounded by the curves \(y^2 = 3 - x \) and the line \(y = x - 1 \).

Definition 5.3 (Area Between Two Curves about y-Axis) (page 383)
If \(u(y) \) and \(v(y) \) are continuous in the interval \([c, d]\) and \(v(y) \leq u(y) \) for all \(y \) in \([c, d]\), then the area of the region bounded by the curves \(x = u(y) \) and \(x = v(y) \) between the lines \(y = c \) and \(y = d \) is given by
\[
A = \int_{c}^{d} \{ u(y) - v(y) \} \, dy.
\]

Example 5.17 (page 383):
Find the area of the region bounded by the curves \(y^2 = 3 - x \)
and a line \(y = x - 1 \).

5.3 Volume of Revolution (page 387)

If a plane region is revolves about a line then a solid object
is generated which is called the **solid of revolution**, and the
line is called the **axis of revolution**.

**Definition 5.4 (Volume of Revolution about x-Axis)
(page 388)**

Let \(f(x) \) be a non-negative and continuous function in the
interval \([a, b]\). If the region between this curve, the x-axis
and the lines \(x = a \) and \(x = b \) revolves \(360^\circ\) about the x-axis,
then the volume of the solid generated is

\[
V = \pi \int_a^b [f(x)]^2 \, dx.
\]

Example 5.20 (page 388):
Find the volume of the solid of revolution when the region bounded by the parabola \(y = 2\sqrt{x} \) and \(x \)-axis within the interval \([0, 4]\) revolves \(360^\circ\) about the \(x\)-axis.

Definition 5.5 (Volume of Revolution about \(y\)-Axis)
* (page 390)
Let \(u(y) \) be a non-negative and continuous function in the interval \([c, d]\). If the region bounded by \(x = u(y) \), the \(y\)-axis and the lines \(y = c \) and \(y = d \) revolves \(360^\circ\) about the \(y\)-axis, the volume of the solid generated is
\[
V = \pi \int_{c}^{d} [u(y)]^2 \, dy.
\]

Example 5.23 (page 390):
Find the volume of the solid of revolution when the region bounded by the curve \(y = x^2 + 1 \), the lines \(y = 1, \ y = 2 \) and the \(y\)-axis revolves \(360^\circ\) about the \(y\)-axis.

Definition 5.6 (Volume of Revolution about \(x\)-Axis between two Curves)
* (page 391)
Let \(f(x) \) and \(g(x) \) be non-negative and continuous functions in the interval \([a, b]\) and \(g(x) \leq f(x) \) for all \(x\) in the interval \([a,
b]. The volume of revolution when the region bounded by
\(y = f(x), \ g(x), \ x = a \) and \(x = b \), revolves 360° about the x-axis is
\[
V = \pi \int_a^b \left([f(x)]^2 - [g(x)]^2 \right) dx.
\]

Example 5.24 (page 391):
Find the volume of the solid of revolution when the region bounded by the curve \(y^2 = 8x \) and \(y = x^2 \) revolves at 360° about the x-axis.

Definition 5.7 (Volume of Revolution about y-Axis Between Two Curves) (page 392)
Let \(u(y) \) and \(v(y) \) be a non-negative and continuous function in the interval \([c, d]\) and \(v(y) \leq u(y) \) for all \(y \) in the interval \([c, d]\). The volume of the solid generated when the region bounded by the curves \(x = u(y), \ x = v(y), \ y = c \) and \(y = d \) revolves 360° about the y-axis is
\[
V = \pi \int_c^d \left([u(y)]^2 - [v(y)]^2 \right) dy.
\]

Example 5.25 (page 392):
Find the volume of the solid of revolution when the region bounded by the curve \(y^2 = 8x \) and \(y = x^2 \) revolves at 360° about the x-axis.
Exercise at home: (Tutorial 10)

(Page 385) Quiz 5B: no. 1, 3, 4, 7.

(Page 394) Quiz 5C: no. 1(a), 1(c), 2(b), 2(e).

(Page 395) Exercise 5: no. 23, 33, 43.